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TECHNICAL MEMORANDUM 

VAR IATIONAL D IFFERENTIAL EQUATIONS FOR ENGINEERING 
TYPE TRAJECTORIES CLOSE TO A PLANET W ITH A N  ATMOSPHERE 

I NTROD UCT I ON 
This report documents the theory behind a subroutine for optimal 

trajectory computation. The mechanics involved a re  considered to be standard 
knowledge in atmospheric flight mechanics ; therefore, no derivation of the 
equations of motion will be given. The subroutine is intended for use in 
connection with extrema1 field methods. Since a large amount of computational 
work load stems from the nonalignment of the inertial and the aerodynamic 
velocity vector, a special path in the subroutine has been provided for crude 
first investigations with aligned velocity vectors (no planet rotation, no wind). 

The subroutine is intended for engineering-type applications. This 
determines the degree of sophistication for the mathematical model which is 
described in the next section (Mathematical Model). In the computation of 
optimal trajectories, the selection of coordinate systems in which the motion 
is to be described is even more crucial than it is for straightforward numerical 
integration. It affects not only the computational work load (e. g., use of 
trigonometric functions) and the integration accuracy but also the range of 
validity of linear approximations used in the iteration process and the interpret- 
ability of the adjoint variables. The coordinate systems chosen a re  described 
in the third section (coordinate Systems). 

Symbols chosen in the report agree, in general, with those coded. The 
code is intended to be mnemonic (which, of course, is strongly biased by the 
author's background). 

MATHEMATICAL MODEL 
Experience with reentry trajectory computations [ 1, 2, 31 led to the 

definition of the following mathematical model. 



Planetary Model 

Only the gravitational force of the central body is considered. The 52- 
gravitational potential spherical harmonic term is taken into account in the 
vertical gravity component. Other influences of the planets' gravitational field 
or of moons, other planets, and the sun are  disregarded. 

The geometrical form of the planet is a flattened sphere. The actual 
shape is approximated by a third-order polynomial f i t  to the curve AR,(A) = 
radial deviation from a sphere as  function of the geocentric latitude for 
0 5 A 5 n/2. Its derivative €or A = 0 and n/2 is 0. For the earth the 
radius difference between pole and equator is approximately 21 km with a 
maximum in the slope between sphere and ellipsoid of almost 0.2 deg around 
A = n/4. Therefore, for shallow entry angles this has to be taken into account 
E21. 

Atmospheric characteristics a re  a function of altitude alone. Density, 
pressure, and velocity-of-sound profiles have to be furnished by subroutines 
which also provide their derivatives. These profiles a r e  considered to be 
independent of longitude, latitude, and time in the ascent or reentry region 
traversed. 

Vehicle Model 
The vehicle is considered to be a point mass. It has no moments of 

inertia, and its angular motions a r e  considered to be instantaneously change- 
able controls. 

There acts no aerodynamic side force. The vehicle is considered to 
have a plane of symmetry in which the aerodynamic force vector is bound to 
lie (no sideslip). 

The aerodynamic characteristics of the vehicle a re  to be furnished by 
a subroutine. The program is set up for a drag polar type of representation 
(CD = C + CICL + C , C i  + C,CL). Provision is made to take into account 

Mach-number-and altitude- (viscous interaction) dependent changes of the 
characteristics. Note that this does not allow €or double-valued polars (back- 
side of the lift-drag curve). This case may be dealt with by taking the drag 
coefficient a s  control instead o€ the lift coefficient or by going to a parameter 
representation (angle of attack), which, however, doubles the amount of 
computation necessary. 

DO 

s 

2 



3 

Thrust is provided by rocket engines with constant mass flow, The 
effect of atmospheric back pressure is taken into account. 

The thrust angle a s  control is considered to be unconstrained and not 
linked to a certain body axis. This yields information which might be taken into 
account for the design of the vehicle. Thrust angle constraints may be easily 
added. 

CQQRDINATE SYSTEMS 

The basic plane of reference is the equatorial plane of the planet. 

I ne r t i a l  Coordinate System ( Index i )  
A Cartesian planet-centered coordinate system with fixed inertial 

directions is considered to be an inertial system, neglecting the influence of 
the planets motion around the sun or largerscale motions. The x.- and yi- 

1 

axes lie in the equatorial plane, and the planet rotates around the z. axis 

(Fig. 1). The vernal equinox is taken a s  the reference direction for x . 
i 

1 

Figure 1. Inertial and planet fixed coordinate systems. 

3 



P Ian et -Fixed Coordinate System 

This system, indexed p, rotates relative to the inertial system around 
the common z-axis. Its reference direction is taken to be the zero-meridian 
crossing with the equator. In this system the position of the vehicle is measured 
in polar coordinates: longitude 0 ,  latitude A ,  and radius r. The altitude 
above sea level is computed from r and A .  The rate of change of altitude is 
not equal to $ as  it is for a spherical planet. 

M 

Radius Normal Coordinate System ( Index g) 
The equations of motion a re  written in a Cartesian coordinate system 

the z-axis of which is aligned with the radius vector from the planet mass- 
center to the vehicle center of gravity. The x-axis is in the direction of the 
inertial velocity component normal to the radius vector (Fig. 2 ) .  By this 
definition, there is no velocity component in the y-direction. Forces normal 
to the momentary plane of motion containing the planet mass center turn the 
"horizontal'' component U of the velocity vector and thereby the orientation of 
the x-axis. The direction of the x-axis is measured by the inertial azimuth 
angle x. from north positive over east. 

1 

This choice of covdinate system is a compromise with respect to the 
factors mentioned in the introduction. For the most common reentry and the 

P w 

s 

Figure 2. Radius normal coordinate system. 
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final part of ascent trajectories, the kinetic energy of the vehicle is almost 
entirely represented in the horizontal velocity component U (small flight path 
angles). The term U is an essentially monotonic function compared to oscil- 
latory functions for the velocity components in a Cartesian inertial or longitude- 
latitude oriented formulation. However, the azimuth angle is oscillatory and 
invokes trigopometric functions. There is a singularity in crossing the poles 
resulting in A changing sign and 0 jumping by ?r. The important quantity 
radial velocity is a state variable directly. 

Aerodynamic Coordinate System ( Index a) 
The aerodynamic force coefficients a r e  usually defined in a coordinate 

system, the x-axis of which is aligned with the aerodynamic velocity vector. 

D 
The z-axis lies in the vehicle plane of symmetry. The drag cooefficient C 

acts in the negative x is here defined 

upward for p = 0, where p is the bank angle between the z-axis and the 
vertical plane. The direction of the x - axis with respect to the radius 

normal coordinate system is given by the aerodynamic flight path angle y 
a 

the vertical plane and the horizontal misalignment angle in the azimuth AX 

between the horizontal inertial and aerodynamic velocity components (Fig. 3 ) .  

- direction, the lift coefficient C a L 

a 
in 

a 

EQUATIONS OF MOTION AIVD H A M ~ ~ T O N ~ A N  FUNCTION 
In this section the differential equations for the state variables will be 

given together with transformation relations. 

Figure 3 e Aerodynamic coordinate system. 
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Transformation Aerodynam ic-Rad iu s Norma I 

From Figure 3 it is seen that the north-south and east-west aerodynamic 
velocity components a re  given by 

NS VNS = u cos x. + w 
1 

= U sin X. + W - r w cos A ,  
vEW 1 EW P 

where the wind components W are  positive for north wind and east wind. The 
total horizontal aerodynamic velocity component is 

u2 + 2u[cos x. WNS Vah 1 

+ sin x.(wEW - r o COS A ) ]  + w2 
1 P NS 

- r w cos A) '  
+ (wEW P (3) 

The vertical aerodynamic velocity component with W 
is 

positive for a downwind 
V 

v V = ; + w v  (4) 

yielding a total velocity vector 

The case of vertical winds will not be pursued further (W 
areodynamic flight path angle is given by 

0) The 
V 

sin y = v /V o r  tan y a = vV/vah . a v a  

x 

From Figure 3 one reads 

6 



which by trigonometric relations yields 

sin Ax a = (‘EW cos xi - vNs sin xi)/vah = F(U, 5 ,  r, A )  

cos Axa = (VEw sin x. 1 + V NS cos xi)/vah = F(U, xi, r, A )  (7) 

for the horizontal misalignment angle Ax . These expressions depend on the 

state variables U, x r, A a s  indicated after the second equal sign. i’ 

a 

Forces a re  to be transformed from the aerodynamic into the radius 
normal coordinate system by 

where 

1, = COS y COS AX a a 

sin A X  a a ]z = cos y 

l3 = -sin y , 
a 

ni = COS 1.1 sin y cos AX + sin 1.1 sin AX a a a ’  

n3 = cos 1.1 cos y . a 

The bank angle 1.1 is a control to be determined such that a pay-off function is 
extr emiz ed. 

7 



State Differentia I Equations 

Aerodynamic and thrust - terms' a r e  grouped together: - ------- 

cos E cos u U? T 
r m 

X , = U =  - - - + -  

cos y cos Ax a a -9 [ c  m D  -------------- 
+ C (cos p sin y, cos AX + sin 1.1 sin A X , ) ~  , (9) L a . . . . . . . . . . . . . . . . . . . . .  

sin E 
T i;z = i i= E sin X. tan A + - m u  r 1 

X , = r = X 2  , 

x = ; 1 = - - u c o s x  i , r 5 

U sin x i 
r cos A 13 

X , = 8 =  - w  

Y 

'Aerodynamic terms will be designated by broken underlining, thrust 
terms by double underlining, and inertial terms by single underlining. 

8 



The lift coefficient C is the second control. The drag coefficient C is 
L D 

dependent on Mach-Reynolds number and the lift coefficient. A representation 
of the form 

= c + CiCL + c2c2 + c,c; 
cD DO L 

is implemented, where C 

o r  the combined Mach-Reynolds number effects (viscous interaction). This 
form is adapted to a bivariate spline-representation of the drag polar. The 
term S is the aerodynamic reference area. The dynamic pressure 

and the C.  contain the influence of the Mach number DO 1 

1 
q = z p v ;  

contains five state variables [see eqs. (1) through (5)l  which are  U, ;, r, 
xi$ A ,  where r and A also determine the air  density p (h). The altitude h 

above the planet reference surface is written 

h =  r - R o +  a A  , i =  1, 3 (18) i i  

with Ro = equivalent spherical planet radius (6371.2 km for earth). The 
thrust T contains an atmospheric term 

T = b * U  - ( p a  * A )  , 
e e 

where 

U = exit velocity , e 

P, = free-streampressure , 

A = exit area of engines . e 

It is decomposed into a component in the vertical plane containing X 

angle u positive from horizontal upward) and a component normal to this 
plane (angle E ,  positive for increasing x.) ,  

(thrust 
g 

1 

9 



The Hamiltonian Function 
The adjoint variables are  symbolized by the state variable symbol a s  

index ( rp  for C) . The abbreviations used in the derivation a re  also used as  
code in the FORTRAN program. The Hamiltonian is decomposed into inertial, 
thrust, and atmospheric terms: 

Inertial terms: 

[1 - J(%)2(3 sin2 A - I)] U 
I r  

H = -  

where 

i ’  
H, =-(HI2) + sin xi(H15) f hA cos X 

H I 2 = A L h  u , 
U rp 

HI5 = h tan A +- A /cos A X e 

Thrust terms: 

where 

h - w = wi cos E 4- U sin E , 

In order to determine the optimal thrust program, H 

with respect to the mass flow b and the thrust angles cr and E .  The last 
term in equation (22) is dependent on the atmosphere too. 

has to be extremized T 



Atmospheric terms: 

where 

a ’  H 1  = HO cos y + h sin y 
a w  

H2 = HO sin y - h cos y , a w  a 

h 
H3 = h sin Ax - - cos Ax , 

U a u  a 

and 

HO = h cos AX + h /U e sin Ax . 
U a x  a 

The term in square brackets is symbolized by 

H6 = C H 1  + CL(H2 cos p + H3 sin p )  . D 

The extremization of H6 with respect to the controls CL (or CD, a) and 

the bank angle 1.1 yields candidates for the optimal controls. The first term in 
equation ( 2 3 )  is an atmosphere-dependent thrust term. - 

Reduced Equations for  Al igned Ine r t i a l  
and Aerodynamic Velocity Vectors 

The misalignment angle Ax  

and inertial flight path angles a re  identical: 

is identically zero, and aerodynamic 
a 

y = yi = tan-i(E/U) (25) a 

With 

v i = (3 + ’ 

11 



there is 

and the atmosphere-related part of the Hamiltonian may be written 

H i  = 
sq  [C, HI1 + C (cos 1.1 HI2 + sin 1.1 HI3)l L 

i 

where 

H I 1 =  U h  f i h  
U r p ’  

H I 2 =  ;h - U h  
U r p ’  

HI3 = -A V /U . 
x i  

This concludes the presentation of the basic equations for the determination of 
the optimal control and the derivation of the adjoint differential equations. 

EXTREMAL CONTROL 
In this section, applying the maximum principle, the extremal control 

will be derived for both maximization and minimization of a pay off function 
(i. e., minimization and maximization of the Hamiltonian with respect to the 
controls) 

Th r u st Control 

Thrust Magnitude. Since the thrust is linear in the mass flow rate b, the 
expression in parentheses in equation (22) acts as  a thrust switching function 

e u 
SWT= - w - h  m m 

The extremal value for b is given in Table 1. 

12 



Figure 4. Extrema1 thrust 
direction and primer 

vector. 

Thrust Direction. Define the two 
vectors (Fig. 4) 

and 

i/ 
W' = [wi + (AX/U)'I ; (31) 

then the following relations hold: 

A = wl cos 'p , 
U 

A = wl sin p , 
rP 

Wi  = W' COS T , 

A /U = w' sin T . 
X 

Introducing these relations into the second and third equations of equation (22) 
yields 

w = w' (cos T cos E + sin T sin E) = w' cos (T - E )  (33) 

and 

w i =  wi(cos 'p cos a -F sin p sin a )  = wi cos ( c p  - a )  . (34) 

13 



The term wi has its maximum value w: for (r = cp and its minimum -w: for 
u = 7r + cp. w, known as  primer vector, has its maximum w' for E = T and 
its minimum -wT for E = T + T. 

The extrema1 controls Q in the vertical plane and E normal to it, 
together with the trigonometric expressions in which they appear in the 
differential equations, a r e  given in Table 2. 

TABLE 2. EXTREMAL THRUST DIXECTION 

Values 

- - U 

- - E 

cos E sin u = 

cos E cos u = 

sin E = 

Pa1 
Maximization 

H min 
UY E 

A /(-w) w 

h /(-w) 
U 

h /( -uw) 
X 

Off 
Minimization 

H max 
U, E 

t a d  A / (uw~)  c x  1 

Note: The terms wi and w are  taken from equations 
(30) and (31). 

Control  of the Aerodynamic Forces 

Introduce (Fig. 5) 

w2 = [(H2)2 + (H3l2] 
H2 

then 
Figure 5. Deter- 

tremal bank 
angle. 

mination of ex- P = tan-'(H3/H2) , 

(35) 

(36) 

14 



and the lift-dependent part of the Hamiltonian in equation (23) may be written 

= -C HI - c w2(cos p cos p + sin p sin p ) .  (37 1 Hi D L 

For positive lift coefficients C 

to p for cos (p - p )  = -1; i. e., p = 7r + p ,  minimal for p = p .  
> 0, the Hamiltonian is maximal with respect L 

The lift coefficient will be confined to the range 

0 5 CL 5 CL . 
max 

Downward accelerating aerodynamic forces may be generated by bank angles 
IPI > n/2. 

Lift coefficients off the boundaries are deter- 
mined from 

H 1  - ( f W 2 )  = 0. (39) 
cD 

acL acL 
-- aHA - - -  

For a drag polar of the form in equation (16) , 
there follows 

'/z 
c = & [ ( l + + J  3c3 c2 - ll 

with 

c = - (+  - H1 + c,)/(2c2) (41) 
L, 

as  optimal control for C, = 0. Figure 6. Determination of - 

extrema1 lift coefficient 
from the components of 

H [see eq. (37 ) l .  only be off the boundary when w2 H1  < 0; 
A 

From Figure 6 it is seen that C can 
L 

15 



for w2, H 1  0 and 

0 and min. H. CL = 0 for 

- 
max 

c L -  cL i. e., when they have different signs. 

maximization of the Hamiltonian or w2, H1 

w2, H1 5 0 and minimization or w2, H1  2 0 and maximization of the 
Hamiltonian. The case C may also occur for w2 H1 4 0. 

max = CL L 

Table 3 summarizes the extremal control for the aerodynamic forces. 

TABLE 3. EXTREMAL CONTROL OF AERODYNAMIC FORCES 

I P =  

sin p = I 
cos p = I 

cL - 1  
1 

I - 

1. ~ 2 ,  H1 5 0 
I 
I 

2.) w2, H1 >- 0 
I 
I 

I 
3.1 ~ 2 ,  H I  = 0 

4., WZ H1 < 0 

Pay Off 
Maximization 

H 
min 

CL’ I-L 

0 

max cL 

singular 

Eqs. (40) and (41) 
with + w2 

ADJOINT EQUATIONS 

_ _  

Minimization 

H 
max 

rnax 

0 

cL 

singular 

Eqs. (40) and (41) 
with - w2 

The adjoint variables h used in eqs. (20) to (28) to form the Hamiltonian 
function and in the preceding section to obtain the extremal control a r e  given by 
the differential equations 

16 



In this section the additive terms for the inertial, thrusting, and atmospheric 
flight parts a r e  derived. These summands of the right-hand side of the 
differential equations will be marked by the indices I, T, A. Haw many of 
these terms are  computed and added up is controlled by logical variables from 
the main program. If all terms are  used, we have 

A = ) l + A T + A A  . - = -- 

Inertial Terms 
From equations (21) and (42) follows: 

(43) 

U 
= - (AA sin x - (HI5) cos Xi) , 1 r i 

- A  J W 6 s i n A c o s A  r , 
rP  

'A = o  , 
m, 1 

'A = o  . 
0 ,  1 

(47 1 

17 



Thrus t  Terms 

From eq. (22) we have for vacuum thrust 

Thrust Terms. 

= i w  *'r, AT 

= + w  
"A, AT - 

- = + w  
"my AT 

h 

u u  
x sin E -- 

Atmospheric Terms 
From the second term in equation (22),  we have 

(53) 

(54) 

(55) 

There a re  two sets of adjoint equations for the atmospheric part, one 
for aligned inertial and atmospheric velocity vectors, which is relatively simple 
and will be treated first, and one for the general case. 

Aligned Velocity Vectors. Equations (25) to (28) yield 

HI6 = CD(Uh + ;A ) 
U ro -4 

HI 1 

) - sin p A, /cos y 3 (56) 
+ cL X 

HI2 
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and 

tan2 y sin p 
A 

L rP V - c (A c o s p  - - 
i 

) + cL(hU cos p - - X tan y sin p 
A 

, 
vi 

aVi avi 
au a +  - -  - c o s y  ;--  - sin y . 

For the additive terms in the adjoined differential equation according to 
equation (42) 

‘A = * [cos y (HI6) + V * a(HI6)/aU] $ 

u, A 2m i 

’A = * [sin y (HI6) + V i a(HI6)/aG] , 
rp, A 2m 

(57) 
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SPV . 

General Case. Since the misalignment angles and the aerodynamic 
velocity vector are  relatively complicated functions of the state variables, the 
partial derivatives of the abbreviations given in equations ( 2 3 )  and ( 2 4 )  a re  
determined in the appendix. Up to equation (A-49) no adjoint variables a re  
involved. The equations (A-50) to (A-56) have to be computed for each set of 
adjoint equations. 

The aerodynamic force terms in equation ( 2 3 )  may be written a s  

From this, the additive terms in the adjoint differential equations to U, $, and 
xi a re  

- -  - 2-  H6 -I- Va ax [ x X, A 2m 

to r and A we have 

sv aH6 v + 2p (H6) (68) 'A - -2 [ (3 ax (H6) + P - )  ax a X, A 2m 

Finally, there is 

- SP 'A - -7 V2 (H6) . m, A 2m a 

TERMS USED IN GRADIENT METHODS 
In a general form, equations (9) to (15) a re  written 

k = f(x, u, t) * (70) 

The control u is eliminated in extrema1 field optimization methods 
by applying the calculus of variation or the maximum principle using 

20 



Lagrangian multipliers (see preceding sections, Extrema1 Control and Adjoint 
Equations). In gradient methods, the iteration centers around an estimated 
time history for the controls. The gradient H 

and the time-varying weighting matrix H'I used in the min-H method [ 41 will 
be given in this section. 

needed in these algorithms 
U 

uu 

With 

and the control vector 

the matrix G = f has the following form: 
U 

G =  

where 

0 0 0 0 0 

0 0 0 0 -1 

0 0 0 0 0 
- 

+ sin Ax sin p , 
a 1 

- -- 'q CL (cos p sin A X  - sin p sin y cos A X  , gl2 - m a a a 
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-T cos E sin u , g13 = 

T 
m g14 = --- sin E cos u , 

a 
U 

cos E cos u , - 
g15 - 

+ sin y cos p )  sin AX acD 
g21 = - % [ ( c o s  Y, q a a 

- cos Ax sin p , 
a 1 

- sq cL (sin 1.1 sin y a sin AX a + cos P cos Ax a ) gZ2 - , 

cos E , T 
g24 = 

sin E , ue 
g45 = 

s q  (sin ya q acD - cos y 
a g3i = 

sq g32 = -- C cos ya sin 1.1 , m L  

cos E cos (T , - T 
g33 - ;;; 

T 
m 

g34 = -- sin E sin (T , 

a U 

m 
- g35 - - cos E sin u . 
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From equations (22) and (23), the following relation for H is obtained: 
U 

HT = 
U 

7- 

2 [H1 e - + H2 cos 1.1 + H3 sin 1.1 

(H3 cos  1.1 - H2 sin 1.1) 

1- acD 

acL m 

s q  -- C m L  

T 
m rp U 
- cos E (h cos cr - A sin a) 

h s(+ cos E - wi sin E 

a 
U 
- w - h  m m - 

H =  uu 

with 

bi = h, = -- s q  (H3 cos 1.1 - H2 sin p )  
m 

(73) 

b2 = 3 C m L  
(H2 cos 1.1 + H3 sin p )  , 
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T 
h34 = h43 = - sin E (h  sin a - A COS a )  , m U rp 

U 

m U rp 
cos E (A sin a - A cos a) , - e  h35 = h,, - -- 

It is seen that thrust and aerodynamic forces are  completely decoupled. Since 
the Hamiltonian is linear in the mass flow rate b, its influence may be accounted 
for by changes in the switching times T 

H can be deleted. 

and T and the fifth row and column of e 1 

uu 

For the computation of the influence functions [ 51 , the expressions 

but a re  formed with T 
G h a re  needed which a re  similar in structure to H 

the adjoint variables for one given final condition; where as, H is formed with 

the Lagrangian multipliers as  a superposition of the adjoints 141 

U 

U 

h = h  + v . h  (75 1 
Cp 1 9i 

with v. as  constant multipliers for the given final conditions JE-. (X t ) = 0 . 
1 1 f’ f 

CONTROL DEPENDENT STATE SPACE CONSTRAINTS 
If the trajectory is bound to lie in a certain region of the state space, it 

is in general made up of arcs on the state space boundary and arcs  off it. The 
case where the state space constraint function involves one of the controls 
directly is of special interest in atmospheric flight mechanics since both normal 
acceleration and reradiative heating constraints a re  of this type, 

In this section the necessary relations for applying the constraint 
optimization technique of reference I61 a re  derived for the above-mentioned 
constraints. 
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Reradiat ive Heating Con stra int 

It is assumed that a quasisteady heating equilibrium model is a good 
enough approximation to the dynamic process. Then the constraint function 
may be written in the form 

where h 

velocity and lift coefficient in order not to exceed the heating limit. On a 
boundary arc, the lift coefficient a s  the only control involved in the constraint 
directly has to be determined by C = 0. Then, in order to satisfy the neces- 
sary conditions of optimality, additive terms in the adjoint differential equations 
have to be evaluated (second summand) : 

is a limit altitude above which the vehicle has to stay for a given L 

T 
A =  - -  ax 

From equation (76) follows 

au  

(77) 

Together with equation (72), the second summand in equation (77) may be 
written 

and with the abbreviations in equation (23) 

av 
au - ---.  sq a (H7) , - 'A u, C I  ava 
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where 

H7 = - (Hl) + cos p (H2) + sin p (H3) . 
acL 

In extrema1 field methods, the last two terms sum up to w2 [see equations (35) 
to (37)l. For the other adjoints, one obtains similarly 

av 
x, Ci m aVa axi ‘ A  - - 7-- sq a (H7) , 

av 
rp, C, m av a +  - ---- sq a (H7) , - ‘h  

a 

acL ava 
---)-H7 av an . 

a 
o h  

(83) 

(85) 

The derivatives 

which generates 

ac / a V  and a C  /ah 
L a  L L  

the control on the boundary C ( p ,  V ) . 
have to be furnished by the subroutine 

L a 

Norma I Acceleration Constraint  
The constraint equation is 

From 
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and 

av v 
ac - 
ax gmo 
- -  

the additive terms in equation (77) become 

ava - (H7) a L 8U 
= -0.5 SpV C *A 

u, c, 
av 

= -0.5 SV pC 2 (H7) 
i a L ax -A x, c, 

av 

/av v 

V 
*A 

A ,  c, 
On the boundary, the lift coefficient is determined from 

(89) 

Note that for C 2 CL and C L  = 0, this constraint can always be 

satisfied, whereas the heating constraint above may lead to a reduced set of 
entry conditions onto the constraint for feasible trajectories. This difference 
comes from the fact that the normal acceleration is generated by the control, 
while the heating constraint is a state space constraint where the control enters 
a s  a parameter. 

min min L 
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FORTRAN SUBROUTINE 

Logica 1 State 
Variable 

. True. 

.False. 

The mathematical model described in the previous sections has been 
coded in FORTRAN for use in an extrema1 field algorithm. The program is 
self-explanatory once the logical parameters are  described, which is the 
purpose of the following section. 

Result (deg) 

Planet oblateness taken into account: altitude 

h = r - Ro + Ah(A) 

Spherical planet h = r - Ro 

, equation (18) 

Controlling Logic 
The purpose of incorporating ten logical variables was to achieve a 

flexible and efficient subroutine. Five of the control variables are  input 
parameters into the main program and remain constant throughout the iterations. 
They partly specify the case to be run. 

Planet rotation taken into account 



The other five logical variables a re  stored in a two-dimensional array 
and controlled by a switching function subroutine which sets them a s  a function 
of the state and adjoint variables during the iteration. The first index refers to 
the trajectory section under consideration, the second to the number of the 
switching function. Their effect is given in Table 5.* 

TABLE 5. LOGICAL PARAMETERS 
SET BY SWITCHING FUNCTIONS 

LogicaI 
Variable 

I State 

. True. 

.False. 

.True. 

. False. 

. True. 

.False. 

. True. 

.False. 

.True. 

.False. 

Result 

Atmospheric terms are  taken into account 

Atmospheric terms a re  by-passed 
(e. g., for h > 100 km) 

Thrust is on 

A l l  thrust terms are  by-passed 

Vehicle flies on heating constraint boundary 

Heating constraint not effective 

Vehicle flies on normal acceleration boundary 

Normal acceleration constraint not effective 

Flight with CL 
max 

C determined from X and h - - L 

* The FORTRAN-program is documented under separate cover. Copies are 
available from: Trajectory & Optimization Theory Branch, Aero- 
Astrodynarr*ics Laboratory, Marshall Space Flight Center, Alabama 35812, 
Attn: Mr .  J. R. Redus, S&E-Aero-GT. 
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APPENDIX 

DERIVATION OF PARTIAL DERIVATIVES NEEDED TO FORM 
THE ADJOINT DlFFERENTlAL EQUATIONS 

For nonaligned inertial and aerodynamic velocity vectors, the following 
dependencies are noted: 

The equations are given in the section, Equations of Motion and Hamiltonian 
Function. From these the following partial derivatives a re  obtained: 

North-south aerodynamic velocity component: 

NS * ( A 4  VNS = u cos x. + w 
1 
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aVNS -- aVNS - cos xi - = -U sin x au ' axi i 

aVNS - a wNS aVNS - aWNS a h  --- .---- a r  a h  an a h  an 

E a st-west aerodynamic velocity component: 

= U sin x. + W - o r cos A 
'EW 1 EW P 

= u cos x au a Xi i 
aVEW -- 

aVEW 
- 0  C O S A  * -  

-- aVEW - aWEW 
a r  a h  P an 

Radius normal aerodynamic velocity component: 

'ah = (VkW + Vks > 

aVNS 
au vNS + %w 

. (A-2) 

(A-3) 

awEW ah  - - - + opr sin A . 
ah  an 

(A-4) 

(A-5) 

%)/Vah= au cos AX a , 

a '  

(A-7) 

aWEW ( - 'Os ') / 'ah, 
a 'ah aWNS 

DVAHDR = - a r  - - [ ' N S x  "EW a h  P 

DVAHDL = - a 'ah - - ( v N S X  a 'NS + v E w B L 1  avEw)/Vah . (A-9) an 
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Aerodynamic velocity : 

v a = (Vih+ ?)% , 

----- - cos y cos Ax aVah 'ah a -  

a 

av 
au au v a a '  

----- - U cos y sin Ax aVah 'ah a -  
av 
a X. axi  va a a '  

1 

a av 
- -  - i./v = sin y a t  a a '  

(A-10) 

(A-11) 

(A-12) 

(A-13) 

(A -14) 
aVah - cos y - - c o s y  - * - -  

- -  a Vah ava ava 
a r  a a r  an a an 

Aerodynamic flight path angle: 

sin y, = G/Va , (A-15) 

a sin y . av 
-sin y cos y COS Ax /v a - -r a -  - 7 a v -  a a a a '  a au DSGDU = 

(A-16) 

a sin y av 
DSGDRP = a ?  a = (va - $)ha = cos2 y a a  /v , (A-17) 

asin Ya -r - -Taxi- a a a a 
- -sin y cos y sin Ax U/Va , DSGDC = a Xi 

(A-18) 

= -sin y cos y - ' (A-19) 
a sin y a DSGDR = a r  

a a a r  

= -sin y cos y - "".h/Va ' (A-20) 
a sin y 

a 
a an DSGDLA = a n  a 
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(A-21) 

= sin2 y COS AX /v , a a  (A-22) a 

a cos y a 
DCGDRP = = -sin y cos ya/va , (A-23) a?  a 

a cos y a 
= sin2 y sin Ax u/v (A-24) DCGDC = 

a a '  a Xi a 

a COS Y avah 
a -  - -  sin2 y /V (A-25) a r  a a '  

DCGDR = a r  

a COS y avah 
a -  - -  sin2 y /V (A-26) an an a a  

DCGDLA = 

Radius normal aerodynamic misalignment angle Ax : 
a 

cos x. - 7 aVNS sin xi ) Vah 
1 

a sin Ax 

au au DSCDU = 

= -sin Ax cos Ax /v a a ah ' 

a sin Ax 
a = [ u(cos2 x. + sin2 x.>v 

1 1 ah 
DSCDC = a Xi 

(A-28) 

33 



a sin AX, aVNS 
= (2 cos x - - a r  sin x. 1 a r  i DSCDR = 

a a r  

avNS cos Xi - - sin x. a sin Ax 
a -  

DSCDLA = an a A  an 1 
- 

(A-30) 

(A-31) 

sin X. + v cos xi)/vah , (A-32) cos Ax = (VEw 
1 NS a 

a u  au au DCCDU = 

- cos Axa a%]/vah = sin2 Ax a /v ah ’ (A-33) 

a cos AX, 
a X. = [ u(cos xi sin xi - sin x. cos xi) 

1 
DCCDC = 

1 

a ‘ah - cos Axa a Xi 

cos x. a r  a r  1 

a COS AX 
DCCDR = 

a h  ’ - COS AX - a a r  

(A-34) 

(A-35) 
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cos x 
a cos Axa 

an 1 i DCCDLA = 

Velocity of sound, 

Mach number: 

- cos Ax a "..)/vah an . 

a i r  density and pressure a, p, pa = f [h(r, A)]: 

a P  - ap  a h  
an a h  an . - - - -  

. - - - -  aP - a p  a h  an ah  an. 

aa  a a  a h  
¶ an ah  an . . e=-- 

= v / a  , a Ma 

ava -/a = cos y cos Ax /a , aMa - 
au au a a DMADU = - - 

a Ma ava DMADRP = - = -/a = sin y /a a t  a r  a 

aMa - ava U DMADC = - - -/a= - cos y sin Ax , a Xi a Xi a a a 

(A-36) 

(A-37) 

(A-38) 

(A-39) 

(A-40) 

(A-41) 

(A -42) 

(A -43) 

(A -44) 

(A -45) 

Drag coefficient: 
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similar for I?, X. acD - a c ~  a M a  
au aMa au 1 ’  

DCDDU = - - - - (A-47) 

With these expressions the partial derivatives of the composite terms of 
equation (23) may be written: 

a a COS AX a sin Ax aHO a 
au u x  

DHODU = - = au 
(A-50) 

Let X stand for x r, A ; then we have 
i’ 

a COS Ax A a sin Ax aHO - a X a + -  - -  ax U ax U ax 

A a cos A X  X a - -  a a sin Ax aH3 - =  ax U ax U ax 

(A-51) 

(A -52) 

With X standing for U, cy xi’ r, A, the partials of H1  and H2 may be written 

a cos y a sin y 
+ A  9 (A-53) 

a -- - a 
ax ax a ax rp ax 

a H 1 -  aHO cos y + HO 

a sin y a cos y 
9 (A-54) 

a a - A  - - -  ax ax a ax r p  ax 
aH2 - aHO sin y + HO 

a - _  
a 

a sin Ax 
a - A  aH3 - A 

au U au X 
(A-55) 
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Finally we have as  partials of H6 [ see equation (24) 1 

aH3 a H 1  a H2 + C L s i n p -  H 1 +  CD ax + cL COS c1 - ax ax 
8 H6 a cD - = -  a x  ax 

(A-56) 
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